Mimosa Origami: A nanostructure-enabled directional self-organization regime of materials
نویسندگان
چکیده
One of the innate fundamentals of living systems is their ability to respond toward distinct stimuli by various self-organization behaviors. Despite extensive progress, the engineering of spontaneous motion in man-made inorganic materials still lacks the directionality and scale observed in nature. We report the directional self-organization of soft materials into three-dimensional geometries by the rapid propagation of a folding stimulus along a predetermined path. We engineer a unique Janus bilayer architecture with superior chemical and mechanical properties that enables the efficient transformation of surface energy into directional kinetic and elastic energies. This Janus bilayer can respond to pinpoint water stimuli by a rapid, several-centimeters-long self-assembly that is reminiscent of the Mimosa pudica's leaflet folding. The Janus bilayers also shuttle water at flow rates up to two orders of magnitude higher than traditional wicking-based devices, reaching velocities of 8 cm/s and flow rates of 4.7 μl/s. This self-organization regime enables the ease of fabricating curved, bent, and split flexible channels with lengths greater than 10 cm, demonstrating immense potential for microfluidics, biosensors, and water purification applications.
منابع مشابه
Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod.
Distinct electromagnetic properties can emerge from the three-dimensional (3D) configuration of a plasmonic nanostructure. Furthermore, the reconfiguration of a dynamic plasmonic nanostructure, driven by physical or chemical stimuli, may generate a tailored plasmonic response. In this work, we constructed a 3D reconfigurable plasmonic nanostructure with controllable, reversible conformational t...
متن کاملEngineering Mountain Folds in Cell Origami
We report a method to create mountain folds, protruding ridges, in cell origami, a polymer structure folding technique driven by cell traction force (CTF). Formerly, cell origami was based on valley folds, indented creases, only [2]. We created mountain folds adjacent with valley folds. We present designs for self-folding structures as well as for physically stimulated structures. The adhered c...
متن کاملTopography-controlled alignment of DNA origami nanotubes on nanopatterned surfaces.
The controlled positioning of DNA nanostructures on technologically relevant surfaces represents a major goal along the route toward the full-scale integration of DNA-based materials into nanoelectronic and sensor devices. Previous attempts to arrange DNA nanostructures into defined arrays mostly relied on top-down lithographic patterning techniques combined with chemical surface functionalizat...
متن کاملDNA origami templated self-assembly of discrete length single wall carbon nanotubes.
Constructing intricate geometric arrangements of components is one of the central challenges of nanotechnology. Here we report a convenient, versatile method to organize discrete length single-walled carbon nanotubes (SWNT) into complex geometries using 2D DNA origami structures. First, a size exclusion HPLC purification protocol was used to isolate uniform length, SWNTs labelled with single st...
متن کاملThe Energy Landscape for the Self-Assembly of a Two-Dimensional DNA Origami Complex.
While the self-assembly of different types of DNA origami into well-defined complexes could produce nanostructures on which thousands of locations can be independently functionalized with nanometer-scale precision, current assembly processes have low yields. Biomolecular complex formation requires relatively strong interactions and reversible assembly pathways that prevent kinetic trapping. To ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2016